
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Love.io
Date: 18 Oct, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Love.io

Auditors
Przemyslaw Swiatowiec | Lead Solidity SC Auditor at Hacken OÜ
Kornel Światłowski | SC Auditor at Hacken OÜ
Roman Tiutiun | SC Auditor at Hacken OÜ

Tags Staking

Platform EVM

Language Solidity

Methodology Link

Website https://love.io

Changelog 18.10.2023 – Initial Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://love.io


Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 5
Findings 6

Critical 6
High 6
Medium 6
Low 6

L01. Missing Withdraw Reward Token Mechanism For Contract Owner 6
L02. Missing validation If Stake Token Supports Fee-On-Transfer 6

Informational 7
I01. Style Guide Violation - Order of Layout 7
I02. Use Custom Errors Instead Of Error Strings To Save Gas 8
I03. Typos In The Code 8

Disclaimers 10
Appendix 1. Severity Definitions 11

Risk Levels 11
Impact Levels 12
Likelihood Levels 12
Informational 12

Appendix 2. Scope 13

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Love.io (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

LOVE.IO is a flexible staking with a locked period until a planned date.
Users can unstake tokens before the planned date but there will be no
profit for them in this case. It comes with the following contract:

● Minting — a contract that rewards users for depositing their
tokens. APY percentages are pre-defined and sorted in ascending
order based on time. Users can stake only when the owner
supplies liquidity. The contract also implements penalties for
early withdrawals.

Privileged roles
● The Owner is responsible to set the paused state using setPaused()

function and has all users` access rights. If the contract is paused,
then users can not make stake new tokens.

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Documentation Typo in NatSpec. (I03)

Code quality
The total Code Quality score is 9 out of 10.

● Style Guide violations found in code.(I01)
● Insufficient Gas modeling.(I02)

Test coverage
Code coverage of the project is 100% (branch coverage), with a mutation
score of 79.31%.

Security score
As a result of the audit, the code contains 2 low issues. The security
score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.8 The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

18 October 2023 2 0 0 0

Risks

● Stake contract owners have to precisely calculate how many tokens
should be allocated for staking rewards. Tokens send to Minting.sol
contract cannot be withdrawn.

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

No medium severity issues were found.

Low

L01. Missing Withdraw Reward Token Mechanism For Contract Owner

Impact Medium

Likelihood Low

In the Minting.sol contract, owner has to deposit liquidity to enable
the contract to operate and pay staking rewards to its users.
However, a issue has been identified concerning the contract owner's
distribution of reward tokens to users who have staked their tokens.

Example scenarios in which this issue arises:

● The owner transfers more tokens than required.
● Users choose not to utilize the contract.
● Owners seek to recover penalties.

In situations like these, when a withdrawal mechanism is not present,
tokens can potentially become trapped within the contract. While the
Love protocol documentation does touch on this mechanism, it is
considered a best practice for security to enable contract owners to
withdraw their tokens in the event of unforeseen circumstances,
specifically the portion that is not already committed to active
liquidity earmarked for rewards.

Path: ./contracts/Minting.sol

Recommendation: It is recommended to add a withdrawal mechanism for
reward tokens that are not part of an active liquidity
(maxPotentialDebt).

Found in: 9f9b2b4

Status: New

L02. Missing validation If Stake Token Supports Fee-On-Transfer

Impact Medium

www.hacken.io
6



Likelihood Low

According to the technical requirements, the contract is not designed
to accommodate fee-on-transfer tokens. Regrettably, this limitation
lacks validation in the code.

The reward token is included in the constructor() without undergoing
any validation process. Consequently, there exists a risk that the
stake contract owner could inadvertently introduce an unsupported
fee-on-transfer token, potentially resulting in an erroneous state of
the contract.

Path: ./contracts/Minting.sol: constructor();

Recommendation: Implementing validation for the reward token is
strongly recommended to ensure that only tokens not supporting
fee-on-transfer are added. This can be achieved by introducing a new
function that accepts liquidity from the owner and verifies that the
transferred amount matches the deposited amount. Alternatively, this
validation can be integrated into every stake transaction to maintain
the integrity of the contract.

Found in: 9f9b2b4

Status: New

Informational

I01. Style Guide Violation - Order of Layout

Contract readability and code quality are influenced significantly by
adherence to established style guidelines. In Solidity programming,
there exist certain norms for code arrangement and ordering. These
guidelines help to maintain a consistent structure across different
contracts, libraries, or interfaces, making it easier for developers
and auditors to understand and interact with the code.

The suggested order of elements within each contract, library, or
interface is as follows:

● Type declarations
● State variables
● Events
● Modifiers
● Functions

Functions should be ordered and grouped by their visibility as
follows:

● Constructor
● Receive function (if exists)
● Fallback function (if exists)

www.hacken.io
7



● External functions
● Public functions
● Internal functions
● Private functions

Within each grouping, view and pure functions should be placed at the
end.

In the Minting.sol contract, the order of external, public, internal,
and private functions is not followed, and the functions are not
grouped according to their visibility.

Path: ./contracts/Minting.sol

Recommendation: Consistent adherence to the official Solidity style
guide is recommended. This enhances readability and maintainability
of the code, facilitating seamless interaction with the contracts.

Found in: 9f9b2b4

Status: New

I02. Use Custom Errors Instead Of Error Strings To Save Gas

Custom errors were introduced in Solidity version 0.8.4, and they
offer several advantages over traditional error handling mechanisms:

1. Gas Efficiency: Custom errors can save approximately 50 gas
each time they are hit because they avoid the need to allocate
and store revert strings. This efficiency can result in cost
savings, especially when working with complex contracts and
transactions.

2. Deployment Gas Savings: By not defining revert strings,
deploying contracts becomes more gas-efficient. This can be
particularly beneficial when deploying contracts to reduce
deployment costs.

3. Versatility: Custom errors can be used both inside and outside
of contracts, including interfaces and libraries. This
flexibility allows for consistent error handling across
different parts of the codebase, promoting code clarity and
maintainability.

Path: ./contracts/Minting.sol

Recommendation: To save gas, it’s recommended to use custom errors
instead of strings.

Found in: 9f9b2b4

Status: New

I03. Typos In The Code

The comments in the Minting contract require the following
corrections:

www.hacken.io
8



● In the comment for the numOfActiveStakes variable, it should be
'currently' not 'currenlty'.

● In the comment within the withdraw() function, it should be
'contract' not 'comtract'.

● In the same comment within the withdraw() function, it should
be 'subtract' not 'substract'.

● In the NatSpec for the
_calculateRewardForDurationAndStakingPeriod() function, it
should be 'subtracting' not 'substracting.'

Path: ./contracts/Minting.sol

Recommendation: Fix aforementioned typos.

Found in: 9f9b2b4

Status: New

www.hacken.io
9



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
10



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
11



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
12



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/gotbitlabs/love-staking

Commit 9f9b2b44598bf0d38c9b97e2d24ff3e29d0fb1a7

Whitepaper Not provided

Requirements File: Love Minting PSRS.docx
SHA3: fd61bd186b706a83455c4a8ad296383a2309860c22b496167b9fdc96b71eb61a

Technical
Requirements

File:
https://docs.google.com/document/d/1JMwjPNY1B18LO5sz0cHBS_VHyWQIrCZIXC
RlV1UnJCc/edit?usp=sharing
SHA3: 073c88fca5f10bd05193ad3a95e845561585f76bb4b310b84724fec20b56341d

Contracts File: contracts/Minting.sol
SHA3: dacc803b98d939138e3489e1088d8a5f317e924249ad9c982241fe09748d367f

www.hacken.io
13

https://github.com/gotbitlabs/love-staking
https://docs.google.com/document/d/1JMwjPNY1B18LO5sz0cHBS_VHyWQIrCZIXCRlV1UnJCc/edit?usp=sharing
https://docs.google.com/document/d/1JMwjPNY1B18LO5sz0cHBS_VHyWQIrCZIXCRlV1UnJCc/edit?usp=sharing

