
Smart Contract Code Review
And Security Analysis
Report

Customer: Lovefy Inc

Date: 16/02/2024



We express our gratitude to the Lovefy Inc team for the collaborative engagement that enabled the
execution of this Smart Contract Security Assessment.

Lovefy Inc is a decentralized protocol for peer to peer value transfer connecting Web3, with traditional
Social Media and E-Commerce platforms

Platform: EVM

Language: Solidity

Tags: Staking

Timeline: 30/01/2024 - 16/02/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope  

Repository https://github.com/gotbitlabs/love-lending

Commit b679cf2

2

https://hackenio.cc/sc_methodology
https://github.com/gotbitlabs/love-lending


Audit Summary

10/10 9/10 100% 10/10

Security Score Code quality score Test coverage Documentation quality score

Total 9.8/10
The system users should acknowledge all the risks summed up in the risks section of the report

3 3 0 0

Total Findings Resolved Accepted Mitigated

Findings by severity  

Critical 1

High 0

Medium 1

Low 0

Vulnerability Status

F-2024-0702 - Potential Locking of Unclaimed Rewards in Minting Contract Fixed

F-2024-0713 - Stake and Reward Locking in Staking Contract for Consecutive Reward Periods Fixed

F-2024-0716 - Checks-Effects-Interactions Pattern Violation in stake Function Fixed

3

https://portal.hacken.io/App/Projects/Details/75c55880-e1b8-4adc-8ecb-12d73c1cccb3/Finding/0fe2294e-c2ea-47ce-9ce5-ac4b0d14b598
https://portal.hacken.io/App/Projects/Details/75c55880-e1b8-4adc-8ecb-12d73c1cccb3/Finding/d0104af5-bbfe-407c-b44e-a7c173206866
https://portal.hacken.io/App/Projects/Details/75c55880-e1b8-4adc-8ecb-12d73c1cccb3/Finding/db180c7c-c679-41c8-80cb-a8993ad6f3b8


This report may contain con�dential information about IT systems and the intellectual property of the
Customer, as well as information about potential vulnerabilities and methods of their exploitation. 

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication of
this report shall be without mandatory consent.

Document  

Name Smart Contract Code Review and Security Analysis Report for Lovefy Inc

Audited By Ivan Bondar

Approved By Przemyslaw Swiatowiec

Website https://love.io/

Changelog 01/02/2024 - Preliminary Report; 16/02/2024 - Final Report

4

https://love.io/


Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Vulnerability Details 9

Observation Details 18

Disclaimers 22

Appendix 1. Severity De�nitions 23

Appendix 2. Scope 24



System Overview

Lovefy Inc is a decentralized protocol for peer to peer value transfer connecting Web3, with traditional
Social Media and E-Commerce platforms. The Minting Contract designed for staking tokens to earn
rewards. It centralizes the process of token staking and reward distribution, offering a transparent and
e�cient mechanism for managing stakes and calculating rewards.

Files in the Scope:
Minting.sol - This contract is the backbone of Lovefy Inc's framework, offering a range of functionalities:

Token Staking and Reward Distribution:
Central to the system, it manages the staking of tokens by users.
Responsible for tracking individual stakes, total staked tokens, and calculating rewards based on
stake duration and amount.

Withdrawal and Reward Claiming Mechanisms:
Enables users to withdraw their staked tokens along with the earned rewards.
Supports management of individual stakes and facilitates the claiming of rewards.

Privileged roles

Contract Owner:
Possesses the authority to transfer ownership, and to pause or unpause the contract.
Responsible for updating reward rates and distribution periods, pivotal for the system's reward
mechanism.

6



Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project. Detailed
scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are detailed:
Project overview is detailed.
All roles in the system are described.
Use cases described.
For each contract all futures are described.
All interactions are described.

Technical description is robust:
Run instructions are provided.
Technical speci�cation is provided.
NatSpec is su�cient.

Code quality

The total Code Quality score is 9 out of 10.

The development environment is con�gured.
Solidity Style Guide violations.

Test coverage

Code coverage of the project is 100% (branch coverage).

Deployment and basic user interactions are covered with tests.
Negative cases coverage is present.
Interactions by several users are tested.

Security score

Upon auditing, the code was found to contain 1 critical, 0 high, 1 medium, and 0 low severity issues. All
issues were �xed in the remediation part of this audit, leading to a security score of 10 out of 10. 

All identi�ed issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 9.8. This score re�ects
the combined evaluation of documentation, code quality, test coverage, and security aspects of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/


Risks

Importance of Setting Correct Reward Rates:
The contract's functionality relies on the accurate setting of reward rates to cover the designated
reward period. If the reward rates are not con�gured correctly, it may lead to issues related to
insu�cient rewards, disrupting the expected distribution of rewards to users.

8



Findings 

Vulnerability Details

F-2024-0713 - Stake and Reward Locking in Staking Contract for
Consecutive Reward Periods - Critical

Description: The staking contract exhibits a critical �aw in the withdraw function,
speci�cally in the handling of maxPotentialDebt. This issue arises due to
the contract's methodology for calculating and updating maxPotentialDebt
during the seting of the new reward rate, staking and reward distribution
processes.

The vulnerability is rooted in the contract's logic for adjusting
maxPotentialDebt. When a user attempts to withdraw their stake and claim
rewards, the contract reduces maxPotentialDebt by the amount of the
reward associated with the withdrawing stake. However, this approach does
not account for scenarios where additional stakes are made or new rewards
are added during an active reward period. Consequently, maxPotentialDebt
may not accurately re�ect the total potential rewards claimable by all stakers,
leading to a situation where maxPotentialDebt is less than the actual
rewards claimable at the time of withdrawal.

The issue is particularly evident in the following snippet from the withdraw
function:

if (totalSupply == 0) {

maxPotentialDebt = 0;

} else {

maxPotentialDebt -= reward;

}

This logic fails to consider the dynamic nature of staking and reward
distribution. It assumes a linear and static relationship between the staked
amount, rewards, and maxPotentialDebt, which is not always the case,
especially when new stakes are made or additional rewards are added mid-
period or post initial period.

If maxPotentialDebt is less than the rewards due at the time of withdrawal,
the withdrawal transaction will revert, effectively locking both the user's stake
and their earned rewards.

Assets:
Minting.sol [https://github.com/gotbitlabs/love-lending]

Status: Fixed

9

https://portal.hacken.io/App/Projects/Details/75c55880-e1b8-4adc-8ecb-12d73c1cccb3/Finding/d0104af5-bbfe-407c-b44e-a7c173206866


Classi�cation

Severity: Critical

Impact: Likelihood [1-5]: 5

Impact [1-5]: 5

Exploitability [1,2]: 1

Complexity [0-2]: 0

Final Score: 5.0 [Critical]

Recommendations

Recommendation: To mitigate this vulnerability, the contract should implement a more robust
mechanism for recalculating or adjusting maxPotentialDebt :

Implementation of Emergency Withdraw Feature:
To enhance the robustness and trustworthiness of the Minting
contract, it is recommended to implement an emergency withdrawal
mechanism. This feature would allow stakers to unstake their tokens
without claiming rewards in the event of issues with the reward
system or other unforeseen problems.

Dynamic Recalculation of maxPotentialDebt:
Implement a mechanism to dynamically recalculate
maxPotentialDebt whenever there is a signi�cant change in the
staking pool. This includes not only when rewards are added or the
reward rate is changed but also when new stakes are made or
existing stakes are withdrawn.
This can be achieved by creating a function, which recalculates
maxPotentialDebt based on the current totalSupply,
rewardRate, and rewardsDuration.
Integration with Staking and Withdrawal Functions:

Integrate this function into the stake and withdraw functions
to ensure maxPotentialDebt is updated in real-time with every
staking activity.
This ensures that maxPotentialDebt always aligns with the
total rewards claimable, preventing discrepancies that could lead
to stake and reward locking.

Safeguard in the withdraw Function:
In the withdraw function, before reducing maxPotentialDebt
by the reward amount, add a check to ensure that
maxPotentialDebt does not become less than the total
rewards claimable by all stakers.
If such a situation is detected, trigger a recalculation of
maxPotentialDebt to align it with the actual reward liabilities.

10



Remediation (Revised commit: b679cf2) : The staking contract's withdraw
function was updated to address the critical �aw related to
maxPotentialDebt. The maxPotentialDebt variable was removed, and
the reward tracking system was revised to ensure accurate and dynamic
calculation of rewards. Although an emergency withdrawal feature was not
implemented, the updated reward tracking system effectively negates
potential issues related to stake and reward locking.

Evidences

Evaluating Stake and Reward Locking in Staking Contract for Consecutive Reward Periods

Reproduce:
PoC Steps:

Deploy Contracts and Set Up Test Environment:
Deploy the staking contract and the ERC20 token contract.
Assign su�cient tokens to the deployer for minting rewards.

Initial Reward Calculation and Minting:
Calculate the total reward based on the desired reward duration.
Mint the calculated reward amount to the staking contract's address.

Activate Initial Reward Distribution:
Call the notifyRewardAmount function on the staking contract with
the initial reward rate.

First User Stakes Tokens:
Execute the stake function from user1 with a speci�ed token amount.
Log the staking contract's balance and user1's balance post-stake.

Simulate Time Passage:
Wait for half the duration of the reward period to simulate the
passage of time.

Second User Stakes Tokens:
Execute the stake function from user2 with the same token amount.

Set Up and Activate Second Reward Period:
Calculate a new, smaller reward amount and mint these tokens to the
staking contract.
Call notifyRewardAmount again with the new reward rate.

Wait for Completion of Both Reward Periods:
Pause the test execution until both reward periods have fully elapsed.

Attempt Withdrawal by First User:
User1 attempt to withdraw their stake and claim rewards.
Expect this transaction to be reverted due to insu�cient funds related
to maxPotentialDebt.

Log Final Token Balances:
Log the �nal token balance of the staking contract and user1 to
con�rm the locking scenario.

it('Evaluating Stake and Reward Locking in Staking Contract for Cons

ecutive Reward Periods', async () => {

11



// Initial reward setup

let reward

See more

Results:
Minting contract

Staking Contract Balance (Post-User1 Stake): 1000499.999999999984096

ETH

User1 Balance (Post-Stake): 500.0 ETH

Staking Contract Final Balance: 1500999.999999999976144 ETH

User1 Final Balance (Expected to be unchanged): 500.0 ETH

√ Evaluating Stake and Reward Locking in Staking Contract for Consec

utive Reward Periods

Files: Minting.fundLock.test.ts

12

https://portal.hacken.io/App/Projects/Details/75c55880-e1b8-4adc-8ecb-12d73c1cccb3/Finding/d0104af5-bbfe-407c-b44e-a7c173206866


F-2024-0702 - Potential Locking of Unclaimed Rewards in Minting Contract
- Medium

Description: The Minting contract's design for staking and reward distribution potentially
leads to the locking of unclaimed rewards. This issue arises due to the
mechanism of setting the reward rate and the periodFinish timestamp,
which does not account for the possibility of delayed staking by users.

The notifyRewardAmount function sets the rewardRate and
periodFinish based on the current timestamp and rewardsDuration.
However, if there is a delay between setting these values and the �rst user
staking tokens, the rewards corresponding to the elapsed time since
periodFinish was set remain unclaimed and locked in the contract:

function notifyRewardAmount(uint128 newRewardRate) external onlyOwne

r {

// ...

periodFinish = uint80(block.timestamp) + rewardsDuration;

// ...

}

In scenarios where users stake after a delay, the rewards for the time elapsed
prior to the �rst stake remain unclaimed and are effectively locked in the
contract, as the reward calculation is based on the periodFinish
timestamp.

Assets:
Minting.sol [https://github.com/gotbitlabs/love-lending]

Status: Fixed

Classi�cation

Severity: Medium

Impact: Likelihood [1-5]: 5

Impact [1-5]: 2

Exploitability [1,2]: 1

Complexity [0-2]: 0

Final Score: 3.5 [Medium]

Recommendations

Recommendation: To mitigate this issue, consider implementing a mechanism to adjust the
periodFinish or the reward calculation to account for the time elapsed

13

https://portal.hacken.io/App/Projects/Details/75c55880-e1b8-4adc-8ecb-12d73c1cccb3/Finding/0fe2294e-c2ea-47ce-9ce5-ac4b0d14b598


before the �rst stake is made (globalId == 0). This could involve
recalculating the periodFinish based on the timestamp of the �rst stake or
adjusting the reward distribution mechanism to distribute the unclaimed
rewards proportionally to future stakers.

Remediation (Revised commit: b679cf2) : The Minting contract was updated
to track unused rewards in case of delays in the �rst user stake or absence of
stakes within a reward period. Unused rewards are now transferred to the
owner upon creation of a new reward period, ensuring no rewards are locked in
the contract.

Evidences

Reward Locking Scenario in Staking Contract

Reproduce:
PoC Steps:

Mint and Transfer Rewards:
Calculate the total reward amount and reward rate.
Mint the calculated reward amount to the staking contract address.

Initialize Reward Distribution:
Call notifyRewardAmount on the staking contract with the calculated
reward rate.

Simulate Delay Before Staking:
Wait for a speci�ed period (e.g., 1 day) to simulate a delay before any
user stakes tokens.

Execute User Stake:
Have a user (e.g., user1) call the stake function with a speci�ed token
amount.

Wait for Reward Period to End:
Wait for the entire reward duration plus an additional buffer time to
pass.

Perform Withdrawal:
Have the same user call the withdraw function to unstake tokens and
claim rewards.

Verify Contract State:
Check the token balance of the staking contract to con�rm if any
unclaimed rewards are left.
Compare the �nal token balance of the user to ensure rewards were
correctly claimed.

PoC Test:

it('Reward Locking Scenario in Staking Contract', async () => {

// Calculate the reward based on the desired reward duration

reward = ethers.constants.WeiPerEther.mul(1_000_000)

.div(rewardDuration)

.mul(rewardDuration);

// Determine the reward rate per second

rewardRate = reward.div(rewardDuration);

14



// Mint the calculated reward tokens to the staking contract

// This is necessary to ensure the staking contract has enough token

s to pay out rewards

await token.connect(deployer).mint(staking.address, reward);

// Initialize the reward distribution with the calculated reward rat

e

await staking.notifyRewardAmount(rewardRate);

// Assertions to verify that the reward rate and remaining rewards a

re set correctly

expect(await

See more

Results:
Minting contract

Staking Contract Balance (Post-Reward Transfer): 999999.999999999984

096 ETH

User Initial Balance: 1000.0 ETH

Staking Contract Balance (Post-User Stake): 1000499.999999999984096

ETH

User Balance (Post-User Stake): 500.0 ETH

Staking Contract Balance (Post-Withdrawal): 2739.757737189243995 ETH

User Balance (Post-Withdrawal): 998260.242262810740101 ETH

√ Reward Locking Scenario in Staking Contract

Files: Minting.noRewardsPeriod.test.ts

15

https://portal.hacken.io/App/Projects/Details/75c55880-e1b8-4adc-8ecb-12d73c1cccb3/Finding/0fe2294e-c2ea-47ce-9ce5-ac4b0d14b598


F-2024-0716 - Checks-Effects-Interactions Pattern Violation in stake
Function - Info

Description: The stake function in the staking contract allows users to stake tokens by
updating contract state variables and performing a token transfer from the
user to the contract. The sequence of these operations is crucial for
maintaining contract security and integrity.

function stake(uint128 amount) external whenNotPaused {

_updateReward(0);

require(amount > 0, 'Cannot stake 0');

require(periodFinish > block.timestamp, 'Reward period not activated

');

// ... state updates ...

stakes[++globalId] = Stake({

owner: msg.sender,

amount: amount,

earned: 0,

userRewardPerTokenPaid: rewardPerTokenStored,

timestamp: uint80(block.timestamp),

unstakedAtBlockNumber: 0,

unstakedAtBlockTimestamp: 0

});

// ... more state updates ...

stakingToken.safeTransferFrom(msg.sender, address(this), amount);

}

In the current implementation, the safeTransferFrom call is made after
updating the contract's state. This call acts as a proof that the user possesses
the required token amount and has granted the contract permission to access
their tokens. It also con�rms the successful receipt of these tokens by the
contract.

This order of operations can be exploited in certain scenarios:

Malicious or Flawed Staking Token Contract: If the staking token contract
is maliciously designed or has implementation �aws, it could enable
reentrancy attacks during the token transfer. An attacker could take
advantage of the state changes that have already occurred before the
transfer.
Impact on Dependent Contracts: If other contracts rely on the proof of
stake provided by this contract (e.g., for enabling certain actions for
stakers), they could also be impacted by this vulnerability. The premature
state change before the token transfer could lead to incorrect
assumptions or validations in those dependent contracts.

Assets:
Minting.sol [https://github.com/gotbitlabs/love-lending]

Status: Fixed

16

https://portal.hacken.io/App/Projects/Details/75c55880-e1b8-4adc-8ecb-12d73c1cccb3/Finding/db180c7c-c679-41c8-80cb-a8993ad6f3b8


Classi�cation

Severity: Info

Impact: Likelihood [1-5]: 2

Impact [1-5]: 2

Exploitability [1,2]: 2

Complexity [0-2]: 0

Final Score: 1.6 [Informational]

Recommendations

Recommendation: Modify the stake function to perform the safeTransferFrom call
immediately after the initial checks and reward update.

Remediation (Revised commit: b679cf2) : The stake function in the staking
contract was updated to perform the safeTransferFrom call immediately
after initial checks.

17



Observation Details

F-2024-0715 - Unsafe `uint128` casting - Info

Description: The staking contract exhibits potential data type mismatches in two functions:
earned and _notifyRewardAmount. In both cases, uint128 is used for
return values and intermediate calculations, while the underlying logic involves
uint256 computations. This inconsistency could lead to data truncation if
the calculated values exceed the storage capacity of uint128.

Key Code Snippets:

earned function:

function earned(uint256 id) public view returns (uint128) {

Stake memory _stake = stakes[id];

if (_stake.unstakedAtBlockNumber == 0) {

return uint128(

(_stake.amount * (rewardPerToken() - _stake.userRewardPerTokenPaid))

/

ACCURACY + _stake.earned

);

}

return 0;

}

_notifyRewardAmount function:

function _notifyRewardAmount(uint128 newRewardRate) private {

uint128 reward = uint128(newRewardRate * rewardsDuration);

// ... rest of the function

}

The primary concern is the potential for inaccurate calculations due to data
truncation. This could affect the fairness and reliability of the staking
mechanism and reward rate settings.

Assets:
Minting.sol [https://github.com/gotbitlabs/love-lending]

Status: Fixed

Recommendations

Recommendation: To mitigate these risks, consider the following adjustments:

Uniform Data Types:
Update the return type of the earned function and the local variable
reward in _notifyRewardAmount to uint256. This change aligns
the data types with the internal calculation data types, preventing
potential truncation issues.

Implement Safe Casting Mechanisms:

18

https://portal.hacken.io/App/Projects/Details/75c55880-e1b8-4adc-8ecb-12d73c1cccb3/Finding/b451b488-3484-4f84-b48f-911af819cff2


Utilize OpenZeppelin's safe-casting library to handle casting
operations securely. This library includes checks to prevent type
conversion errors, ensuring safe and accurate casting practices.

Remediation (Revised commit: b679cf2) : The staking contract was updated to
address potential data type mismatches. The earned function now returns
uint256 instead of uint128 to prevent data truncation. Additionally, checks
have been introduced in the _notifyRewardAmount function to ensure
values do not exceed the maximum rate, enhancing the accuracy and fairness
of reward calculations and distributions.

19



F-2024-0717 - Redundant periodFinish Check in the Stake Function - Info

Description: In the stake function of the contract, there is a redundant check related to the
periodFinish variable.

The �rst require statement checks if the reward period is activated, ensuring
that the function cannot proceed if the condition is not met. Subsequently,
there is another check within the same function that veri�es the same
condition. Since the function already checks this condition in the initial
require statement, the second check is redundant and can be safely
removed.

function stake(uint128 amount) external whenNotPaused {

//..

require(periodFinish > block.timestamp, 'Reward period not activated

');

// Redundant check for periodFinish

if (totalSupply == 0 && uint80(block.timestamp) < periodFinish) {

maxPotentialDebt =

(periodFinish - uint80(block.timestamp)) *

uint256(rewardRate);

}

//..

})

This redundancy can be removed to streamline the function and make it more
e�cient.

Assets:
Minting.sol [https://github.com/gotbitlabs/love-lending]

Status: Fixed

Recommendations

Recommendation: Remove the second check for the periodFinish from the stake function to
simplify the code.

Remediation (Revised commit: b679cf2) : The redundant check for
periodFinish in the stake function of the contract was removed.

20

https://portal.hacken.io/App/Projects/Details/75c55880-e1b8-4adc-8ecb-12d73c1cccb3/Finding/10797317-ea46-47fa-a493-9954829bfd75


F-2024-0718 - Function Parameter "paused" Shadows Function paused()
from Pausable Contract - Info

Description: In the Minting contract's setPaused function, the parameter paused
shadows the paused() function inherited from the Pausable contract.
Shadowing occurs when a local identi�er (variable, parameter, etc.) in a scope
has the same name as an identi�er in an outer scope, potentially leading to
confusion and errors in understanding the code.

This issue does not pose a direct security risk, but it can lead to readability and
maintainability issues.

Assets:
Minting.sol [https://github.com/gotbitlabs/love-lending]

Status: Fixed

Recommendations

Recommendation: Rename the paused parameter in the setPaused function to a distinct name
that does not con�ict with any inherited functions or state variables.

Remediation (Revised commit: b679cf2) : The Minting contract's setPaused
function parameter was renamed from paused to state to avoid shadowing
the paused() function inherited from the Pausable contract.

21

https://portal.hacken.io/App/Projects/Details/75c55880-e1b8-4adc-8ecb-12d73c1cccb3/Finding/496fb9b8-1fd4-4863-8b53-ca401ab5c0e7


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time of the
writing of this report, with cybersecurity vulnerabilities and issues in smart contract source code, the details
of which are disclosed in this report (Source Code); the Source Code compilation, deployment, and
functionality (performing the intended functions).

The report contains no statements or warranties on the identi�cation of all vulnerabilities and security of
the code. The report covers the code submitted and reviewed, so it may not be relevant after any
modi�cations. Do not consider this report as a �nal and su�cient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements. 

While we have done our best in conducting the analysis and producing this report, it is important to note
that you should not rely on this report only — we recommend proceeding with several independent audits
and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of the
translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming
language, and other software related to the smart contract can have vulnerabilities that can lead to hacks.
Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

22



Appendix 1. Severity De�nitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood, Impact,
Exploitability and Complexity metrics to evaluate �ndings and score severities. 

Reference on how risk scoring is done is available through the repository in our Github organization: 

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of user
funds or contract state manipulation.

High
High vulnerabilities are usually harder to exploit, requiring speci�c conditions, or have a more
limited scope, but can still lead to the loss of user funds or contract state manipulation.

Medium
Medium vulnerabilities are usually limited to state manipulations and, in most cases, cannot
lead to asset loss. Contradictions and requirements violations. Major deviations from best
practices are also in this category.

Low
Major deviations from best practices or major Gas ine�ciency. These issues will not have a
signi�cant impact on code execution, do not affect security score but can affect code quality
score.

23

https://github.com/hknio/severity-formula/blob/main/README.md


Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details  

Repository https://github.com/gotbitlabs/love-lending

Commit c62c919b4e89cec629fe1478cec4bb578d903264

Whitepaper NA

Requirements NatSpec

Technical Requirements NatSpec

Deployed Address ETH 0xBb39219BE50f2743353e23Db204997bA421275de

Deployed Address BSC 0x2CB5398C6dDa35636324c6050960E8722a7E2Dc1

Deployed Address PLS 0xb7F1198a651e8009052b3eBb59C53dADD9AF8D25

Contracts in Scope

./contracts/Minting.sol

24

https://github.com/gotbitlabs/love-lending



